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1 Matrix review

Recall that for generic matrix A € R™*" written as
AT
A= | = [A(l) A(n)} ’
AT

we have defined the column space of A,

C(A) = 2(AD, .. A1) = {Z a;AV)
j=1

xl,...,anR} :{Ax|x€Rn}:Im(TA)§Rm,

the nullspace of A as
N(A) = {x eR"| Ax = 0} = Ker(T4) C R",

and the row space of A as

R(A) :=C(AT) = L(Ay,..., Ap) = {i yi A;
=1

yl?"'aymeR} an

Finally, the rank of a matrix is conventionally defined as rank(A) := dim(C(A)).

Exercise 1. In your first homework, you show that for A € R™*" A(A) = R(A)*. Combine this
with the rank-nullity theorem for linear maps to show that

dim(C(A)) = dim(R(A)).

This exercise finally justifies that matrix rank can be defined as either of these two quantities.



Exercise 2. Let A € R™** B e R¥*". Show that
rank(AB) < min {rank(A), rank(B)} .

If k=n (ie., A€ R"™" B e R"™") and B is invertible, show that rank(AB) = rank(A).

2 General normal equations

Recall the general setup we had for the normal equations. Let (V, (-, -)) be a real inner product
space. Let {vi,...,vx} € V, and consider Vp = Z(v1,...,v;). For any v € V, by definition of
projection, there exists o = [ay --- a]7 € R¥ such that Py, (v) = Z§:1 a;vj. We showed that o
is a solution to the so-called normal equations,

Ma = v, (1)

where the Gram matrix M € R¥*¥ is given by [M]; j = (v;,v;), and v = [(v,v1) - (v, v4)]T € R,
In a lemma, we proved that

e There always exists a solution to (1).
e There is a unique solution if and only if rank(M) = k.

e There is a unique solution if and only if {vi,...,v;} are linearly independent.

We then focused on the case where the solution was indeed unique, i.e., the “full rank” setting.
In this case, the matrix M represents a bijective linear map in £(R*, R¥), which allows us to talk
about the inverse of M through the inverse of its associated linear map. In the full rank setting,
we have a formula for the solution to (1), given by

a=M1lv

We review next how population and sample least squares can be viewed as special cases of this
general setup!



3 Population least squares

Recall that whenever it exists,
Ep[Y | X] = argmin, ||V — g(X)||1,(p) = arg min, Ep{(¥ — (X)),
In the linear model, where Ep[Y | X] = X7 3(P), we must then have
XTB(P) = argmingegal|Y — X B|7,p) = Pri(Y),
where Vy = Z(X1,...,X4) C Lo(P), since XT3 = 2?21 B;X;. In this case, (1) becomes
Ep[XXT]61 = Ep[XY),

for any B' such that X737 = X73(P). The solution is unique (i.e., 81 = B(P)) if and only if
X1,...,Xg are linearly independent in Lo(P). In this case,

-1
B(P) = {Ep[XXT]}  Ep[XY].
Lemma 1. The random variables 1, X1, ..., X, are linearly independent in Lo(P) if and only if
EX = Cov p(X)

is invertible. Equivalently, this holds iff ¥x has full (column) rank.

4 Sample least squares
Similar to the population setting, we have seen that a sample least squares estimator of B(P) —
an empirical risk minimizer under square loss in the linear model — must satisfy
XB* = argmingegal|Y — X33,

where now we use the standard Euclidian norm. This means that for any such minimizer,

XB* = Pexy (Y),
where C(X) = Z(XM, ..., X)) C R”. In this setting, (1) becomes

xTxg* = x7Y.

When XM, ... X@ are linearly independent in R” (i.e., rank(X) = d), there is a unique solution

given by the familiar formula R
B=X'x)xTy.

Note that this gives us the hat matrix in the full rank setting: Px = X(XTX) X7,



Exercise 3. Recall that for a linear subspace V' C R" (e.g., V = C(X)), we can talk about the
projection matrix Py € R"*" i.e., Py(y) = Pyy, for all y € R™.

(a) Show using properties of projection that 13V is symmetric and idempotent.

(b) Show that rank(]sv) = dim(V).

Exercise 4. Let V be a vector space, and Vy C V; two finite-dimensional linear subspaces of V.
Show that

onimvl = Py, — Py,

Then show that this implies PVOJ_ = Iy — Py,, where Iy is the identity map on V.



Exercise 5. Suppose that the design matrix X is full column rank, i.e., X, ... X are linearly
independent. For j € {1,...,d} fixed, define

X)Lt .— x() — ]D(:(Xﬂ_)(x(j))7

where

C(X_;) =2(XW . XU X6+ xd)

which is the column space of X after deleting the j-th column. In this exercise, we will show that
the sample least squares regression coefficients 8 = (X7 X)"!XTY satisfy

—~ (Y, X(j)»l>
I XOL, X0

Recalling that Pe(x)(Y) = X3, proceed in the following steps:

(a) Argue that XU+ € C(X).

(b) Show that (Pe(x)(Y), XUty = (Y, XUy,

(c) Show that also (Pp(x) (Y), X0y = <X(j)’l,X(j)’J‘>Bj-

(d) Conclude and interpret. Bonus: what does this result say if X1, ... X are orthogonal?
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