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1 Matrix review

Recall that for generic matrix A ∈ Rm×n, written as

A =

A
T
1
...
AT

m

 =
[
A(1) · · · A(n)

]
,

we have defined the column space of A,

C(A) := L (A(1), . . . , A(n)) =


n∑

j=1

xjA
(j)

∣∣∣∣x1, . . . , xn ∈ R

 =
{
Ax
∣∣x ∈ Rn

}
= Im(TA) ⊆ Rm,

the nullspace of A as
N (A) :=

{
x ∈ Rn

∣∣Ax = 0
}

= Ker(TA) ⊆ Rn,

and the row space of A as

R(A) := C(AT ) = L (A1, . . . , Am) =

{
m∑
i=1

yiAi

∣∣∣∣ y1, . . . , ym ∈ R

}
⊆ Rn.

Finally, the rank of a matrix is conventionally defined as rank(A) := dim(C(A)).

Exercise 1. In your first homework, you show that for A ∈ Rm×n, N (A) = R(A)⊥. Combine this
with the rank-nullity theorem for linear maps to show that

dim(C(A)) = dim(R(A)).

This exercise finally justifies that matrix rank can be defined as either of these two quantities.



Exercise 2. Let A ∈ Rm×k, B ∈ Rk×n. Show that

rank(AB) ≤ min {rank(A), rank(B)} .

If k = n (i.e., A ∈ Rm×n, B ∈ Rn×n) and B is invertible, show that rank(AB) = rank(A).

2 General normal equations

Recall the general setup we had for the normal equations. Let (V, 〈·, ·〉) be a real inner product
space. Let {v1, . . . , vk} ⊆ V , and consider V0 = L (v1, . . . , vk). For any v ∈ V , by definition of
projection, there exists α = [α1 · · · αk]T ∈ Rk such that PV0(v) =

∑k
j=1 αjvj . We showed that α

is a solution to the so-called normal equations,

Mα = ν, (1)

where the Gram matrix M ∈ Rk×k is given by [M]i,j = 〈vi, vj〉, and ν = [〈v, v1〉 · · · 〈v, vk〉]T ∈ Rk.
In a lemma, we proved that

• There always exists a solution to (1).

• There is a unique solution if and only if rank(M) = k.

• There is a unique solution if and only if {v1, . . . , vk} are linearly independent.

We then focused on the case where the solution was indeed unique, i.e., the “full rank” setting.
In this case, the matrix M represents a bijective linear map in L(Rk,Rk), which allows us to talk
about the inverse of M through the inverse of its associated linear map. In the full rank setting,
we have a formula for the solution to (1), given by

α = M−1ν

We review next how population and sample least squares can be viewed as special cases of this
general setup!
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3 Population least squares

Recall that whenever it exists,

EP [Y |X] = arg ming‖Y − g(X)‖L2(P ) = arg mingEP [(Y − g(X))2].

In the linear model, where EP [Y |X] = XTβ(P ), we must then have

XTβ(P ) = arg minβ∈Rd‖Y −XTβ‖2L2(P ) = PV0(Y ),

where V0 = L (X1, . . . , Xd) ⊆ L2(P ), since XTβ =
∑d

j=1 βjXj . In this case, (1) becomes

EP [XXT ]β† = EP [XY ],

for any β† such that XTβ† = XTβ(P ). The solution is unique (i.e., β† ≡ β(P )) if and only if
X1, . . . , Xd are linearly independent in L2(P ). In this case,

β(P ) =
{
EP [XXT ]

}−1 EP [XY ].

Lemma 1. The random variables 1, X1, . . . , Xd are linearly independent in L2(P ) if and only if

ΣX = CovP (X)

is invertible. Equivalently, this holds iff ΣX has full (column) rank.

4 Sample least squares

Similar to the population setting, we have seen that a sample least squares estimator of β(P ) —
an empirical risk minimizer under square loss in the linear model — must satisfy

Xβ∗ = arg minβ∈Rd‖Y − Xβ‖2,

where now we use the standard Euclidian norm. This means that for any such minimizer,

Xβ∗ = PC(X)(Y),

where C(X) = L (X(1), . . . ,X(d)) ⊆ Rn. In this setting, (1) becomes

XTXβ∗ = XTY.

When X(1), . . . ,X(d) are linearly independent in Rn (i.e., rank(X) = d), there is a unique solution
given by the familiar formula

β̂ = (XTX)−1XTY.

Note that this gives us the hat matrix in the full rank setting: P̂X = X(XTX)−1XT .
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Exercise 3. Recall that for a linear subspace V ⊆ Rn (e.g., V = C(X)), we can talk about the
projection matrix P̂V ∈ Rn×n, i.e., PV (y) = P̂V y, for all y ∈ Rn.

(a) Show using properties of projection that P̂V is symmetric and idempotent.

(b) Show that rank(P̂V ) = dim(V ).

Exercise 4. Let V be a vector space, and V0 ⊆ V1 two finite-dimensional linear subspaces of V .
Show that

PV ⊥0 ∩V1
= PV1 − PV0 .

Then show that this implies PV ⊥0
= IV − PV0 , where IV is the identity map on V .
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Exercise 5. Suppose that the design matrix X is full column rank, i.e., X(1), . . . ,X(d) are linearly
independent. For j ∈ {1, . . . , d} fixed, define

X(j),⊥ := X(j) − PC(X−j)(X
(j)),

where
C(X−j) := L (X(1), . . . ,X(j−1),X(j+1), . . . ,X(d)),

which is the column space of X after deleting the j-th column. In this exercise, we will show that
the sample least squares regression coefficients β̂ = (XTX)−1XTY satisfy

β̂j =
〈Y,X(j),⊥〉
〈X(j),⊥,X(j),⊥〉

.

Recalling that PC(X)(Y) = Xβ̂, proceed in the following steps:

(a) Argue that X(j),⊥ ∈ C(X).

(b) Show that 〈PC(X)(Y),X(j),⊥〉 = 〈Y,X(j),⊥〉.

(c) Show that also 〈PC(X)(Y),X(j),⊥〉 = 〈X(j),⊥,X(j),⊥〉β̂j .

(d) Conclude and interpret. Bonus: what does this result say if X(1), . . . ,X(d) are orthogonal?
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